
Aug 2018

F A C E S E A R C H
K N O W W H O ' S T H A T U N K N O W N P E R S O N I N T H E I M A G E

Project Report

Prepared by: Suyog Jadhav

Member at Cyber Labs

0
2

Motivation
This occurred to me while scrolling through my news feed that there

were a lot of unknown people in many of the photos. Some of the

photos also included a few people I already knew and followed

posing with those 'strangers'. Happens quite often with most of us.

Most of the times, we simply ignore or try to google (and retreat). We

don't really have any idea what to do in such a scenario! After 10-15

minutes of Google searching and/or Google dorking¹, we sometimes

even achieve our goal; but nonetheless, not in a straightforward

way. I had learned OpenCV recently and having mostly gone

through a lot of MOOCs in the summer (doing nothing but learning

stuff), I thought why not give it a try!

The way to go
The Google reverse image search comes in handy when you can't

tell Google what you want, in words. The case is similar here. We

know the face, not the name. We can use it. However, just running

an image search for the entire image wouldn't be much fruitful, as it

would most likely return you the same source from where you got

the image!

We can, however fine tune the task and force it to search for a

particular face in the image by using OpenCV and its Cascade

Classifier. Searching for only the face turned out to be giving better

results. We also need to upload the cropped image automatically to

Google and open a new browser window with the results. A little bit

of research showed it to be possible without any API, since Google

has a static link to which one can simply send a POST request (using

requests in python) to upload an image. The returned response

contains a header named 'Location' which is the URL of search

results found by Google. We can then use python's builtin

webbrowser module to open the URL in the user's browser.

That's all we'll need.

0
3

Implementation
The script is a command line application. Once installed, you just

have to do 'facesearch path/to/image' to run the script on the image.

OpenCV is an open-source computer vision library originally written

in C++. It is widely used for computer vision related tasks. For the

curious, computer vision is the field of AI that deals with making the

computers 'see', i.e., work with images and derive useful data from it.

OpenCV was used to detect the faces in the given image, which

were then cropped out using Numpy, a python library for performing

advanced mathematical stuff in python. Mostly used for working

with matrices. The cropped faces are then padded appropriately

and shown to user in a window, using OpenCV. OpenCV provides a

dedicated function (cv2.setMouseCallback) to track the Mouse

events on a window. It returns us the event name and the (x,

y) coordinates of the event. Using the x, y coordinates of the click

event, we can figure out which face user has clicked on. This allows

for a convenient point-and-click operation.

For the convenience of dragging any image right off the internet

and onto the terminal to get it searched, the script checks if the path

provided to it is an internet URL and if it is, uses urllib to GET the

image for further operations.

At last, to search for the selected face, the cropped out face is saved

temporarily in the current directory and then uploaded to the

Google's server using the static link. Once the image is uploaded

and the response is received back, the location header is read and

passed to webbrowser module, which then opens a new browser

window or a new tab in an existing session with the search results.

The script then cleans up the generated image and exits.

View on

https://github.com/IAmSuyogJadhav/FaceSearch

